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Human-Centered Al

And where not possible:

Solve the perception-control involve the human

problem where possible:




« A grid (matrix) of intfensity values
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common to use one byte per value: 0 = black, 255 = white
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How to teach a machine ?
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(or any other hand-crafted features)
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What is deep learning “

* Representation learning method
Learning good features automatically from raw data

* Learning representations of data with multiple levels of abstraction

Google’s cat detection neural network
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Deep Learning Is Representation
Learning

Representation
Learning
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Why Representation Is Importante

Cartesian coordinates Polar coordinates




Why Representation Is Importante







Deep Learning:
Learn effective perception-control from data

Solve the perception-control
problem where possible:

Deep Learning:
Learn effective human-robot interaction from data

And where not possible:
involve the human

11
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Biological Inspiration For
Computation

impulses carried
toward cell body

< P ‘/
dendrites <"\

* Neuron: computational building
block for the brain

* (Artificial) Neuron: computational
building block for the “neural network”




Biological Inspiration For
Computation

« Parameters: Human brains have ~10,000,000 times synapses than artificial
neural networks.

e Topology: Human brains have no “layers”. Topology is complicated.
e Async: The human brain works asynchronously, ANNs work synchronously.

e Learning algorithm: ANNs use gradient descent for learning. Human brains
use ... (we don't know)

* Processing speed: Single biological neurons are slow, while standard neurons
in ANNs are fast.

 Power consumption: Biological neural networks use very little power
compared to artificial networks

e Stages: Biological networks usually don't stop / start learning. ANNs have
Aiffarent fittinA (frain) anAd Nrediction (evAaliiAate) nhAacec



Neural Network History -

B Expectations
or media hype

Gartner Hype Cycle
Peak of Inflated Expectations

’

: Trough of Disillusionment
~ NN, CNN are the third generation of neural network

Technology Trigger

time

1950-70 1980 1990 2000 2006 2009
DNN DNN

(industry)



Microprocessor Transistor Counts 1971-2011 & Moore's Law

Deep Learning Breakthroughs:
What Changedve

e Compute CPUs, GPUs

 Organized large(-ish) datasets
Imagenet

e Algorithms and research: Backprop,
CNN, LSTM

e Software and Infrastructure Git, ROS,
PR2, AWS, Amazon Mechanical Turk,
TensorFlow, ...

e Financial backing of large companies
Google, Facebook, Amazon, ...



Biological Inspiration For
Computation

Neuron: Forward Pass

‘:— H(WX)
sum bias S

2.sumup 3. activate



Recurrent Neural Network

Feed Forward Neural Network

- Have state memory
- Are hard to train




Understanding Deep Learning

» Supervised learning: find the unknown mapping or function:
f(9: y=/(x)., xeR", yeZ

using discrete known examples {x ,y } fori=1,2, ..., /.

» Neural network (MLP) solution: hidden#2
hidden#1 2 4
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h(g): simple nonlinear function



» Theoretically, m=2 is sufficient to

approximate any highly nonlinear
function, i.e.e=0
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Ji. N NN SO N N Y
/x|l Xy Xy 4\ Y




» Problems of machine learning:
f(¢): y=/(x), xeR’ yeZ
using finite discrete known training samples {x .y } for i=1, 2,
Thisis to find:y, = /(\ ) by mlm = mmzu - /(\ )“
can only find:y = /(\ ) fori=l,2, .., 1

not y = /(\) for the wole populationxe R", vyeZ

ik

» How to make

/ — /(\) for the wole population xe R", yeZ'?

Regularization! Using human knowledge to restrict or constrain /

»”~

so that / = f(x), for the whole populationxeR", yeZ
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| » Regularization! Using human knowledge to restrict or constrain .
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» Theoretically, m=2 is sufficient to

approximate any highly nonlinear
function, i.e.e=0
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Convolutional Neural Networks

* CNNs are designed to process the data in the form of multiple arrays
(e.g. 2D images, 3D video/volumetric images)

Typical architecture is composed of series of stages: convolutional layers
and pooling layers

Each unit is connected to local patches in the feature maps of the
previous layer
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Key ldea behind
Convolutional Networks

Convolutional networks take advantage of the properties of natural signals:

e |ocal connections




Key ldea behind
Convolutional Networks

Convolutional networks take advantage of the properties of natural signals:

* local connections * shared weights




Key |dea behind ~
Convolutional Networks

Convolutional networks take advantage of the properties of natural signals:

* |ocal connections * shared weights

* pooling
BE




Key ldea behind
Convolutional Networks

Convolutional networks take advantage of the properties of natural signals:

* local connections * shared weights
* pooling * the use of many layers
= Eis




INPUT
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Convoiutions Convolutions

input CONV=2
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SuUbsamping

First successful
CNN, LeNet5

Full connection Gaussian connections

Full connecton

VGG-Face CNN

FC Soft-max

— F

~ =1 —9Predictio

1. Pooling: average, max, subsampling

2. Network architecture
3. Convolution

3096 4096
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Compare MLP and CNN: Network architecture
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Compare MLP and CNN:

hidden#2

hidden#1 y 4 (gl () “
0SS 7NN M M M
_RSEALL 0 0

0..g ..

0 O

l ‘ M M

. CNN is a simplified MLP L0 0
o=Wix

W=(W,. . W'..

, W7)

g 0 0
M M M
0 0 0
0..g"...0
o 0 0
M M M

() 0 g"’)

extracts less amount of

\ CNNis a regularized MLP Simplification/regularization

discriminative information,
wur Solve over-fitting problem.

@anse Maps
4




Merits of convolutional network, CNN

First successful
CNN, LeNet5

.

. \ (0 )
Ta . %
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el 2 o) =g %}
 d -. _ VGG-Face CNN W,=| 8 |
| " o| =2, .8 . *x
T M =w’x
\ 9

1. Small filter size, forcing all other weights zero, captures image local structure / pattern.

2. The convolution kernel, filter, is an image.
3. Convolution process is the same as correlation processing, matched filter

4. A input image patch similar to the filter mask produces high output while those
dissimilar to the filter mask produce low outputs.

5. A filter is trained to extract a local image structure, blob, corner, line, edge, curve, etc




Further Examples:

1st Layer Filters
G H

A B C D E F |
AZEEEFSER
2nd Layer Filters

E F G H

Filters trained on food scenes. Note the rich
diversity of filters and their increasing
complexity with each layer. In contrast to
the filters shown in previous slide, the filters
are evenly distributed over orientation.

3rd Layer Filters




~ Going deeper in the network

‘ “_‘pUt, 1st and 2nd Layers 3rd Layer 4th Layer
Pixels ‘Object Parts’ ‘Objects’

faces
cars
airplanes

otorbikes




Further merits of convolutional network, CNN
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10. Even if one layer is ineffective or totally useless, no problem so long as it does not lose
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Combing Neurons In Hidden
Layers

» output

Universality: For any arbitrary function f(x), there exists a neural
network that closely approximate it for any input x

Universality is an incredible property!™ And it holds for just 1 hidden layer.

* Given that we have good algorithms for training these networks.
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Deep Learning from Human and Machine

“Teachers”

Human

Human

Machine

Human

Machine

Human

Machine

Machine
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“Students”

Supervised
Learning

Augmented
Supervised
Learning

Semi-
Supervised
Learning

Reinforcement
Learning

Unsupervised
Learning

—~
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Deep Learning from Human and Machine

“Teachers” “Students”

Supenised

Human
Learning

r  Current successes

Human Augmented
' Supervised
Machine Learning

Human

| —

> Near-term future successes

Human —

Machine | —_—

Unsupervised

Machine = | Timre | ™ Long-term future successes




Deep Learning: Training And

Testing

Training Stage:

Input Learning Correct
Data System Output

(aka “Ground Truth”)

Testing Stage:

New Input Learning
Data System !
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| How Neural Networks Learn:
Backpropagation
Forward Pass:

Input Neural
P pr— p—) Prediction

Data Network

Backward Pass (aka Backpropagation):

Neural Measure
_

Network of Error

Adjust to Reduce Error



Special Purpose Intelligence:
Estimating Apariment Cost

ol
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Bedrooms

Neighborhood
(mapped to
an id number)

Price
Estimate




"~ General Purpose Intelligence:
Pong to Pixels




Genera
Pong to

,—“

Purpose Intelligence:

Policy Network:

raw pixels hidden layer

'Il/// probability of

N7 @ moving UP

XRLL = N\

ARZOINAN

Zt N /
Y

Vv

* 80x80 image (difference image)
e 2 actions: up or down
* 200,000 Pong games

This is a step towards general purpose
artificial intelligence!
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Update the weights and biases
to decrease loss function

Loss function:

(y — a)*

(== 7
2

Forward pass to compute network output and “error”
Backward pass to compute gradients
A fraction of the weight's gradient is subtracted from the weight.



Backpropagation

e (W) = a5V
aw! J (error term of the output layer)

(compute gradient) 53) = q(3) — y

@ Q' ~
O

Input x CJ Q\/ / output y <= target y

=0

| ag(z?)

o’ , ¢ (DT
5 = (W(2)) §3)
( ) "Taz@

(error term of the hidden layer)



_Learning Is An Optimization
Propblem

« Update the weights and biases 1o decrease loss function




Optimization Is Hard: Vanishing
Gradients

sigmoid function derivative of sigmoid

derivative is zero at tails

Partial derivatives are small = Learning is slow



—_ L ——
Optimization Is Hard: Dying Relus

RelLU function derivative of RelLU

derivative exadtly zero here

* |f a neuron is initialized poorly, it might not fire for
entire training dataset.

* Large parts of your network could be dead RelLUs!



Neural Network Playground
http://playground.tensorflow.org
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What Can We Do With Deep
Learninge

Learning
System

one to one one to many many to one many to many many to many




Flavors of Neural Networks

one to one one to many many to one many to many many to many

y ) Recurrent Neural Networks
Vanilla

Neural
Networks




Basic terms:

* Deep Learning = Neural Networks
* Deep Learning is a subset of Machine Learning

* Terms for neural networks:
 MLP: Multilayer Perceptron
* DNN: Deep neural networks

* RNN: Recurrent neural networks
* LSTM: Long Short-Term Memory
* CNN: Convolutional neural networks

* DBN: Deep Belief Networks

* Neural network operations:
* Convolution
* Pooling
* Activation function
Backpropagation
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Overfitting and Regularization

« Help the network generalize 1o data it hasn’t seen.
« Big problem for small datasets.
« Overfitting example (a sine curve vs 9-degree polynomial)




Overfitting And Regularization

« QOverfitting: The error decreases in the training set but increases in the test set.
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Regularization: Early Stoppage

Original Set

>

Testing

Training

Training . Validation Testing

* Create “validation” set (subset of the training set).

« Validation set is assumed to be a representative of the testing set.

 Early stoppage: Stop training (or at least save a checkpoint)
when performance on the validation set decreases




