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Abstract. We study patient admission policies in a neurology ward where there are mul-
tiple types of patients with different medical characteristics. Patients receive specialized
care inside the neurology ward and delays in admission to the ward will have negative
impact on their health status. The level of this impact varies among patient types and
depends on the severity of patients. Patients are also different in terms of arrival rate
and length of stay at the ward. The patients normally wait in the emergency department
until a ward bed is assigned to them. We formulate this problem as an infinite-horizon
average cost dynamic program and propose an efficient approximation scheme to solve
large-scale problem instances. The computational results from applying our model to a
neurology ward show that dynamic policies generated by our approach can reduce the
overall deterioration in patients’ health status compared to several alternative policies.
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1. Introduction
Neurological diseases, including Alzheimer, amy-
otrophic lateral sclerosis (ALS), multiple sclerosis,
spinal cord injury, and stroke, represent leading
causes of death and disability in the Canadian and
U.S. populations (World Health Organization 2006).
Many neurological conditions are chronic, worsen
over time, and produce a range of functional limita-
tions posing daily challenges to the patients and their
caregivers. For example, the Heart and Stroke Foun-
dation (www.heartandstroke.com) identifies stroke as
the third leading cause of death in Canada with about
14,000 fatalities each year; and reports that about
300,000 Canadians are living with the effects of stroke.
The Global Burden of Disease study conducted in 2002
by the World Health Organization also determined
that neurological conditions accounted for 38.3% of the
disability-adjusted life years worldwide (Lopez et al.
2006), while the percentages observed in developed
countries are much higher than the global average. The
neurological conditions also have an economic burden.
The incidence of most neurological diseases increases
with age, and this is a particular concern for healthcare
providers and policymakers in an era of extreme aging
population. The latest estimate by the Canadian Insti-
tute for Health Information (www.cihi.ca) pertaining
to the total cost of neurological illnesses in Canada is
$185 billion annually, 55% of which is direct cost. With
respect to utilization of hospital-based services, around
10% of acute care hospitalizations and 20% of patient

days in acute care hospitals on average include patients
with one of the neurological conditions, including the
secondary diagnosis.

Very few neurological conditions are fully curable.
In the event of an acute episode, the neurology patients
are admitted to the hospital through the emergency
department (ED). Diagnosis of such conditions in ED
requires extensive physical examinations, brain imag-
ing (CT or MRI), and other diagnostic tests. Following
these diagnostic tests, the hospital admission decision
is made by a neurologist. Recent studies have shown
that such critically ill patients are more effectively
treated in specialized inpatient settings, i.e., neurol-
ogy wards, offering properly organized care (Chalfin
et al. 2007, Stroke Unit Trialists’ Collaboration 2013).
The features of a neurology ward include the care
given by a specialized nursing team, the use of exten-
sively equipped beds, the availability of occupational,
speech, and physical therapies, as well as social work-
ers (Stroke Unit Trialists’ Collaboration 2013). As a
result, some patients’ quality-adjusted life years can be
improved significantly through enhanced functional
abilities. The accessibility to such specialized care is
particularly time sensitive for patients with acute con-
ditions (Castillo 1999). Indeed, Kucukyazici et al. (2010)
observed that the potential benefits of specialized care
might be offset by long delays in ED prior to admis-
sion to a neurology ward. To avoid such situations, the
neurologist may find it necessary to transfer patients
to another hospital. This is a decision neurology ward
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managers strive to avoid since the patient faces addi-
tional waiting time at the transfer destination.
Many neurology wards face the problem of insuf-

ficient capacity to meet demand for inpatient beds,
especially during demand surges. The problem is pro-
nounced since admitting these patients to other wards
is not an option, i.e., off-unit servicing is not feasible
for these patients. Note that the capacity for patient
care is determined not only by the number of beds in
the neurology ward but also by the team of specialized
nurses, physicians, and allied health professionals. The
patient-to-specialized nurse and patient-to-neurologist
ratios are key performance measures of quality of
care. Moreover, the beds in these wards are specially
equipped neurology beds and substitution of these
beds by admitting those patients to other wards often
has a negative impact on health outcomes. In many
neurology wards, a static patient admission policy is
used by assigning a fixed number of beds to each type
of disease. Sometimes, a certain number of beds are
used as flexible beds and shared among different types
of patients. For example, at the Montreal Neurologi-
cal Hospital, there are 16 beds in the neurology ward,
where six beds are dedicated to stroke patients, six
beds are dedicated to nonstroke neurology patients,
and four of them are used as flexible beds to admit
either stroke or nonstroke patients.

In this paper, we focus on patient admissions from
the ED that involve the development of rules for the
allocation of inpatient beds among multiple types of
patients as well as the patient transfers. In designing
such admission policies, the physicians face the trade-
off between (i) the higher risk of deteriorated func-
tionality due to extended ED stays for more severe
patients and (ii) the increased risk of blocking due to
longer length of stays of these patients. An additional
trade-off is between the benefits of reducing the ED
boarding time by transferring the patient to another
hospital and the inconvenience associated with the
transfer. To address these trade-offs, we formulate an
infinite-horizon average cost dynamic program (DP)
and propose an efficient approximation scheme to
solve large-scale problem instances. Our objective is to
minimize the average opportunity cost of waiting and
transferring by finding the most appropriate patient
admission policy from the ED.
To the best of our knowledge, this is the first paper

that makes an explicit effort to model the differentiat-
ing features of neurology wards, and hence provides
managerial insights specific to this domain. Our con-
tributions are threefold. First, from a modeling per-
spective, we recognize the significance of the presence
of a specialized team of care providers in neurology
wards, which renders off-servicing policies infeasible
for neurology patients. In dealing with the hard capac-
ity constraints, we incorporate the possibility of patient

transfers to other hospitals that are not well studied
in the prevailing literature. Second, from the view-
point ofmethodology,we develop an LP-based approx-
imate dynamic programming (ADP) approach. While
this method typically involves a large-scale LP (e.g.,
de Farias and Van Roy 2006), our approach involves
solving a number of small DPs that are derived by
employing a nonlinear functional approximation. We
tackle the subsequent complexity by a novel decom-
position that results in smaller DPs. We also develop
an ADP-based Priority Cutoff policy that not only
performs well by incorporating the state of the sys-
tem in making the patient admission decisions, but
also is easy to implement. Lastly, on the managerial
side, we highlight the weaknesses of the static patient
admission and ad-hoc patient transfer policies that are
currently popular. In particular, we show that by incor-
porating the current utilization of the ward and the
nature of the waiting line, it is possible to achieve lower
costs and better trade-offs between waiting times and
patient transfers.

The remainder of the paper is organized as follows:
We provide an overview of the most relevant literature
in Section 2. The DP formulation is provided in Sec-
tion 3, whereas we provide an overview of the data
set from Montreal Neurological Hospital as well as
the methods used for estimating the model parame-
ters in Section 4. The properties of the optimal policy
are discussed in Section 5. In Section 6, the solution
methodology is presented. Section 7 provides some
numerical examples to compare the policies obtained
throughADP approach to other admission policies.We
provide some concluding remarks in Section 8.

2. Literature Review
The patient admission problem has received attention
in the academic literature for more than four decades.
Among the first studies, Kolesar (1970) develops a
Markovian model that incorporates the scheduling of
outpatients as well as the admission of inpatients that
need immediate hospitalization. Esogbue and Singh
(1976) consider the admission problem for two types of
patients with the following objectives: maximization of
occupancy and minimization of unsatisfied requests.
They develop a birth and death process based on a pri-
ority cutoff policy and solve for the optimal value of
cutoff priority.

Lapierre et al. (1999) develop a time-series model
based on hourly census data that assists with the allo-
cation of beds between different medical units within
a hospital. Using this model, hospital administrators
can decide how many beds should be allocated to each
unit to have the same number of bed shortage occur-
rences across the units. Li et al. (2008) present an inte-
grated model of queueing and goal programming (GP)
that is illustrated through allocation of beds across the
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departments of a hospital in China. A queueing model
is used to compute certain performance measures of
the system, for example, patient admission probability.
The GP methodology is used to construct a multiob-
jective decision model taking into account the targets
and objectives of hospital management and depart-
ment heads.
The recent paper of Ayvaz and Huh (2010) that stud-

ies allocation of hospital capacities among different
types of patients shares some features with our work.
They consider two types of patients: type-1 patients
who arrive at the system and wait until they are served
and type-2 patients who leave the system if they are
not immediately accommodated (i.e., balking patients).
They assume that each patient requests only one unit of
capacity and whenever she is admitted, she stays only
until the end of that day irrespective of time of admis-
sion. This means that at the beginning of each day,
all the capacity becomes available. A discounted total
cost dynamic program is developed to find the optimal
number of admissions per day. To solve themodel, they
propose a heuristic policy that protects some portion
of capacity for type-2 patients. Helm et al. (2011) incor-
porate the existence of an expedited patient queue that
includes those patients that need to be seen within a
few days. They optimize the admission threshold pol-
icy by formulating the problem as a Markov decision
process (MDP).

From a methodological perspective, the papers that
use approximate dynamic programming for patient
scheduling and admission problems are relevant to
our work. Green et al. (2006) consider capacity allo-
cation of a diagnostic medical facility among differ-
ent types of patients. They develop a finite-horizon
DP that is approximated using linear value functions,
and a heuristic policy is generated based on this linear
approximation. Patrick et al. (2008) formulate advance
scheduling of patients with multiple priorities for
a diagnostic facility as a discounted infinite-horizon
MDP. By considering an affine value function approx-
imation, they produce an approximate linear program
(ALP), which is solved by applying a column genera-
tion technique on its dual problem. Using the solution
of the ALP, they develop a booking policy and present
the optimality gaps. The same approach is used by
Sauré et al. (2012) to schedule cancer patients for radi-
ation therapy sessions. These types of patients require
more than one appointment over the planning horizon
while Patrick et al. (2008) assumes each patient requires
only one appointment.

There are a large number of papers in other areas
such as production planning and scheduling, rev-
enue management, and communication networks that
were pertinent to our work. Carr and Duenyas (2000),
de Vericourt et al. (2002), and Paschalidis and Tsitsiklis

(2000) are good examples of such papers with rele-
vant modeling andmethodological components. In the
interest of space, our review is confined to the health-
care domain. Before we turn to the model statement,
it is important to highlight the differentiating charac-
teristics of our work. First, all types of patients can
wait for service as long as there is space available in
the waiting area (i.e., ED). Second, we incorporate the
decision about transferring the patients to another hos-
pital. Third, we also consider the different length of
stay (LOS) associated with different patient types. The
resulting decision is rather complex from the analytical
viewpoint. Hence, we combine queueing methods and
ADP in devising an integrated solution procedure.

3. The Dynamic Programming Formulation
We consider the problem of admitting patients with
different clinical conditions into a neurology ward.
There are n types of patients indexed by i ∈ {1, . . . , n},
where type 1 is the least severe patient and type n is the
most severe patient. There are B beds available in the
ward. We assume that the beds are multipurpose, i.e.,
each bed can be used for admitting the patient irrespec-
tive of her neurological condition. Patients usually wait
in the ED before a bed in the ward is assigned to them.
It is generally undesirable to keep neurology patients
in the ED due to the lack of the special care needed
by this group of patients. The health status of a patient
with a severe condition deteriorates much faster than
one with a nonsevere condition, in response to delays
in admission to the ward. Assuming that disutilities
associated with such delays can be expressed in qual-
ity of life related terms, let π � (π1 , π2 , . . . , πn)T denote
the waiting cost vector, where πi is the waiting cost
per unit time for a patient of type i. For i < j, we have
πi 6 π j .
We assume type-i patients arrive according to a Pois-

son process with the rate of λi patients per unit time.
Upon the arrival of a new patient, the ward man-
ager decides whether to accept or transfer the patient
to another hospital. Transferring a type-i patient to
another hospital incurs a lump-sum cost, denoted
by κi . Let κ � (κ1 , κ2 , . . . , κn)T be the transfer cost vec-
tor. If the patient is accepted, she is either given a bed
or joins the queue and waits until a bed becomes avail-
able for her. Whenever a type-i patient is admitted to a
bed, we assume she occupies the bed for a time, which
is exponentially distributed with mean of µ−1

i (which
is also called average LOS). Consequently, µi indicates
the discharge rate for patients of type i. For patients
with the same disease, the average LOS for more severe
patients tends to be longer. We assume that arrivals
and discharges occur independently from each other.
When a patient is discharged, a decision is made on
whether to admit a patient from the queue to the ward.
The decision-making process should be based on the
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number of waiting patients from each type and also
the number of empty beds available.
To find the best admission policy, we formulate the

problem as a continuous-time dynamic program. This
enables us to limit our attention only to those times
when there is a change in the state of the system
(Puterman 1994). The change in the state of the system
can be either an arrival of a patient or a discharge of
a patient from the ward. The time horizon is consid-
ered to be infinite, which is consistent with the idea
of running a hospital ward. This problem can be for-
mulated either as a total discounted cost or an average
cost model. While the total discounted approach seems
easier to apply, the dependency of the optimal policy
on the discount factor and initial state is a major draw-
back. Thus, we use an average cost dynamic program,
where the objective is tominimize the long-run average
cost of the system.

3.1. State Variables
The state of the system includes information about the
number of waiting patients and the number of occu-
pied beds by each patient type. We need to distinguish
between the beds occupied by different patient types
because the discharge rates are not the same for differ-
ent types. Let x� (x1 , x2 , . . . , xn)T, where xi is the num-
ber of waiting type-i patients, and b � (b1 , b2 , . . . , bn)T,
where bi is the number of beds occupied by type-i
patients. The state of the system is given by (x,b). Note
that x and b are n-dimensional column vectors. We
assume the total number of waiting neurology patients
is constrained by K, which reflects the hospital’s policy
with regards to the quality of care. Due to time sensitiv-
ity for stabilizing neurology patients as soon as possi-
ble, hospitals prefer not to have these patients boarding
at the ED for extended periods of time. Hence, we have∑n

i�1 xi 6 K. At any time, at most B patients are in the
beds, i.e., ∑n

i�1 bi 6 B. So the state space is finite. We
use post-action state variables so that the transition rate
depends only on the state of the system but not on the
actions.

3.2. Actions
Since we model the problem as a continuous-time
dynamic program, the moments that we make a deci-
sion are restricted to those times that the state of the
system changes (Puterman 1994). We classify the pos-
sible actions based on the cause of state changes.
In the case of an arrival, the possible actions are
• letting the patient join the queue;
• admitting the patient to the ward; and
• transferring the patient to another hospital.
The first option is not feasible if the number of wait-

ing patients has reached its maximum capacity (K).
The second option is feasible only if there is at least
one bed available in the ward. The last option is always
available.

Given state (x,b), the set of admissible actions in the
case of a type-i arrival is

Ui(x,b) �
{
(ai , ti) ∈ {0, 1}2

���� ai 6 	

{ n∑
j�1

b j < B
}
,

	

{ n∑
j�1

x j � K
}
6 ai + ti 6 1

}
, (1)

where 	{·} is the indicator function; i.e., it is equal to 1
if its condition is true and is equal to 0 otherwise. The
variable ai is a 0–1 variable that represents the admis-
sion of a type-i arrival or equivalently, a type-i patient
from the queue. An admission can occur only when
there is at least one empty bed. The constraint ai 6
	{∑n

j�1 b j < B} takes care of this issue. The variable ti is
also a 0–1 variable that indicates the decision related
to transferring the new arrival. In the situation that
the waiting area is full, we must either admit or trans-
fer a patient. The constraint 	{∑n

j�1 x j � K} 6 ai + ti 6 1
takes into account this requirement when choosing an
action. When (ai , ti)� (0, 0), the patient simply joins the
queue and waits until admission to the ward.

In the case of a discharge, the possible actions are
• doing nothing; and
• admitting one patient from the queue.
When a type-i patient is discharged, the set of feasi-

ble actions is

Di(x)�
{
(di1 , . . . , din) ∈ {0, 1}n | di j 6 x j ,∀ j;

n∑
j�1

di j 6 1
}
.

(2)
The variable di j is a 0–1 variable where di j � 1 repre-
sents the admission of a type- j patient when a type-i
patient is discharged. Clearly, this can happen only
when there is at least one waiting patient of type j in
the queue. The constraint di j 6 x j forces di j to the value
0 when there is no waiting patient of type j. The con-
straint ∑n

j�1 di j 6 1 states that we can admit at most one
patient from all types. When all di j are zeros, it refers
to choosing not to admit any patient.

3.3. Transition Probabilities
Let T denote the random time between two decision
points. To find the distribution of T, we use Lemma
1 in EC.1 in the online appendix. Based on the the-
orem in Porteus (2002), Lemma 1 establishes that the
time to the next transition is exponentially distributed
when all the events follow Poisson processes. The rate
of the distribution is the sum of all rates; ν(x,b) �∑n

i�1(λi + biµi). Also, when a transition has already
happened at time t, the probability that the transition
is caused by a specific event is the rate of that event
divided by the sum of all rates. This probability is inde-
pendent of the time that has passed. Since the state
of the system changes over time, the transition rate in
each period is not constant. To transform the system
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into a Markov chain with uniform transition rate, we
apply the uniformization technique.

To use the uniformization technique, we note that
an upper bound for the transition rate is νmax �

∑
i λi +

Bµmax, where µmax � maxi µi . So the new transition
probabilities are given as follows (Bertsekas 2005):

Transition Probability

�



λi

νmax , if there is an arrival of type i,

biµi

νmax , if there is a discharge of type i,

1−
∑n

i�1(λi + biµi)
νmax , if there is no change in state.

Nowwe can scale time such that the maximum tran-
sition rate (νmax) is normalized to 1. To do so, we just
need to define the new arrival and service rates: λi

′
�

λi/νmax and µi
′ � µi/νmax, for all i. Then the new tran-

sition probabilities are

(Normalized) Transition Probability

�


λi
′, if there is an arrival of type i ,

biµi
′, if there is a discharge of type i ,

1−
n∑

i�1
(λi
′
+ biµi

′), if there is no change in state.

Accordingly, the waiting cost of type-i patients per
each normalized time interval is πi

′�πi/νmax. For nota-
tional simplicity, let λi , µi and π denote the normalized
parameters in the remainder of the paper.

3.4. The Bellman Optimality Equation
The Bellman equation of our dynamic program is
given by

[DP] h(x,b) � πTx−ρ∗

+

n∑
i�1
λi min

ai∈Ui (x,b)
{κi ti + h(x+ (1− ai − ti)ei ,b+ aiei)}

+

n∑
i�1

biµi min
di∈Di (x)

{h(x−di ,b−ei +di)}

+

(
1−

n∑
i�1
λi −

n∑
i�1

biµi

)
h(x,b), ∀x,b,

where Ui(x,b) and Di(x) are given by (1) and (2),
respectively, and ei in an n-dimensional identity col-
umn vector.
In [DP], ρ∗ is the optimal average cost per normal-

ized time period and h(x,b) is the bias function that
represents the total difference from optimal average
cost over all periods if we start from state (x,b). The
term πTx − ρ∗ is the difference between the waiting
cost of this period and the optimal average cost. The
second (third) term refers to the case when a type-i

patient arrives (discharges). The last term is associated
with the case of no change in the state. This term has
been added due to the uniformization. In our model,
all the states can be reached from other states, i.e.,Weak
Accessibility holds (Bertsekas 2005). Thus, the optimal
average cost is independent of the initial state of the
system.

4. The Data
To demonstrate the applicability of the proposed DP
formulation and to garner managerial insights, we
developed a full data set representing the patient flows
through the 3-South neurology ward of the Montreal
Neurological Hospital (MNH). As mentioned before,
the MNH neurology ward has 16 inpatient beds. In an
effort to focus on the care provided to stroke patients,
we categorize the patients into four patient types: mild
nonstroke, mild stroke, severe nonstroke, and severe
stroke. Note that these patients arrive at the MNH
through the ED and are kept boarding there until a bed
becomes available at the ward. Our data set includes
all patients treated in the neurology ward for three
full fiscal years. We rely on three sources of data: the
hospital’s ED information system, the patient registry
of McGill University Health Center, and the paper-
based patient charts of the stroke and nonstoke patients
admitted to the 3-South neurology ward of MNH.

In this section, we elaborate on the assumptions that
we have made about the arrival and LOS distributions
and verify them using the available data. Furthermore,
we explain how the waiting costs in the model can be
estimated in the form of health related quality of life
(HRQoL) (Xie et al. 2006). We close the section by also
describing how we estimate the cost associated with
patient transfer, again in terms of HRQoL.

4.1. Analysis of Patient Arrivals
The patient interarrival times to the system are random
and dependent on the type of the patient. We hypoth-
esize Poisson distributions for the patient arrivals. The
histograms of the number of arrivals per day for each
patient type based on three full years of actual data
support this assumption. We test our hypothesis that
the arrival process for each patient type follows a Pois-
son distribution using the χ2 goodness-of-fitness test
with bin size of one. The results are presented in
Table 1, based on which we can conclude that Poisson
distribution fits reasonably well to our data for each
patient type. The goodness-of-fit χ2 tests are found not
statistically significant for all types, i.e., all p-values are
>0.05.
Hourly, daily, and monthly variations can play crit-

ical roles in modeling the arrival processes. To check
whether the arrival rates in our problem vary with
time of the day, day of the week, or month of the
year we run Poisson regression analysis, using STATA
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Table 1. χ2 Goodness-of-Fitness Tests for Patient Arrival
Process

Mean number of χ2-test
Patient type Sample size arrivals per day p-value

Mild nonstroke 259 0.236 0.097
Mild stroke 289 0.262 0.165
Severe nonstroke 151 0.139 0.395
Severe stroke 123 0.113 0.401

13, given that our data fit well to Poisson distribu-
tion. The Poisson regression model for each patient
type uses 4,380 points corresponding to the six-hour
time intervals in the three years from which the data
have been collected. The relatively small arrival rates
in our problem can result in many intervals with zero
arriving patients. Also, the variance of arrival process
tends be larger than the mean in this case. There-
fore, we also conduct zero-inflated Poisson regres-
sion analysis. Comparing the zero-inflated Poisson
regression models to the Poisson regression models
using the Vuong Non-Nested Hypothesis Test pro-
duces p-values of 0.099, 0.069, 0.240, and 0.178 for mild
non-stroke, mild stroke, severe non-stroke, and severe
stroke patients, respectively. These p-values suggest
that the zero-inflated Poisson regressionmodels do not
provide a significant improvement over the standard
Poisson regression models. To confirm this, we also
perform a log-likelihood ratio test to examine whether
the zero-inflation component is in fact necessary. The
results from this test present p-values greater than
0.05 for all patient types, which support the fact that
the zero-inflated Poisson models are not significantly
better than the Poisson models without zero-inflation
component.
The results of the Poisson regression models, which

are summarized in Tables 6–9 in EC.2 in the online
appendix, suggest that the number of arrivals do not
vary with the time of the day, the day of the week, or
the month of the year for all patient types, given that
all the p-values of corresponding categories of the vari-
ables are greater than 0.05. Our findings through zero-
inflated Poisson regression models also report similar
results, i.e., all p-values are greater than 0.05. In a fur-
ther analysis, we define a binary variable of the week-
end day instead of the day of the week variable and

Table 2. Anderson-Darling (AD) Goodness-of-Fitness Tests for LOS Distributions

Exponential Weibull Gamma Lognormal

Patient type Sample size Mean AD p-value AD p-value AD p-value AD p-value

Mild nonstroke 259 13.003 1.129 0.084 1.062 <0.01 1.158 0.007 2.296 <0.005
Mild stroke 289 11.491 1.229 0.064 1.328 <0.01 1.449 <0.005 2.438 <0.005
Severe nonstroke 151 19.011 0.716 0.263 0.744 0.05 0.794 0.048 0.810 0.035
Severe stroke 123 22.002 0.428 0.589 0.421 >0.250 0.433 >0.250 1.760 <0.005

a variable of the season, which takes on values of fall
(reference value), winter, spring, and summer instead
of the month of the year variable. The results of this
analysis also confirm that the rates of arrivals do not
vary either with the weekday/weekend or the season.

4.2. Analysis of Patient LOSs
The patient departures from the hospital during a
given time period are random and dependent on the
patient type. We hypothesize exponential service times
for the LOS of patients. The histograms of LOS of
each patient type support this assumption. We test our
hypothesis that the LOS of each patient type follows
an exponential distribution using Anderson-Darling
goodness-of-fitness test. The Anderson-Darling statis-
tic is not dependent on how the data are binned and
does not require a sufficient sample size, which pro-
vides a more flexible method for our analysis. Using
Minitab 17, we examine (i) if the data are from a pop-
ulation with exponential distribution and (ii) how well
the data fits to other distributions such as lognormal,
Weibull, and Gamma. Table 2 summarizes the results
from Anderson-Darling goodness-of-fitness test. Note
that in fitting Weibull and Gamma distributions to our
data we exclude the exponential distribution as a spe-
cial form of these distributions.

Since a low p-value (<0.05) indicates that the LOSs
do not follow that distribution, exponential distribu-
tion is the only one that fits to the data for mild stroke
and nonstroke patients. For severe nonstroke patients,
the data fit both to the exponential and Weibull distri-
butions. However, given the lower AD and the higher
p-value we choose the exponential distribution as the
best fit. For severe stroke patients, although the lowest
AD is for Weibull distribution, the AD values for expo-
nential, Gamma, andWeibull are in the same range and
results show a p-value higher than 0.05 for exponential
distribution. Therefore, we conclude that exponential
distribution also fits very well for the LOS of severe
stroke patients.

4.3. Patients Waiting and Transfer Costs
Waiting cost. As mentioned earlier, the patients
boarding in the ED for a bed in the neurology ward
suffer from lack of specialized care and their health
status deteriorates as a consequence of staying in
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the ED. This deterioration emerges as worse function-
ality of the patients, which is one of themost important
health outcomes of the neurological patients. For those
patients, discharge destination can be used as a proxy
of patient’s functionality at the time of discharge. In
this context, Kucukyazici et al. (2010) have found that
longer ED boarding time is strongly associated with
increased probability of not being able to discharge
to home, i.e., being admitted to a rehabilitation cen-
ter or long-term care facility. To be more specific, they
observed that a 10% increase in the ED LOS is asso-
ciated with a 7.7% increase in the risk of being dis-
charged to either a rehabilitation center or a long-term
care facility, i.e., not being able to go home. It is estab-
lished that the discharge destination has a significant
impact on both short-term and long-term HRQoL (Xie
et al. 2006). Thus, we estimate the patient’s waiting cost
as the expected HRQoL lost resulting from not being
able to go home due to the ED boarding.
Let βi denote the percent increase in the probabil-

ity of not being discharged home for type-i patients,
as a result of one time unit of boarding in the ED.
We estimate the patient type specific βi utilizing a
regression model controlled for all other clinical and
demographic factors. Let sRi and sLi denote the con-
ditional probabilities of being sent to a rehabilitation
center and a long-term care facility, respectively, given
that the type-i patient is not discharged to home. Note
that sRi + sLi � 1. Moreover, we define theHRQoL values
associated with discharge destination as QH, QR, and
QL for home, rehabilitation center, and long-term care
facility, respectively. There are several studies in the
literature that report the HRQoL measures for neuro-
logical patients including Hopman and Verner (2003),
Jaracz and Kozubski (2003), Jönsson et al. (2005), and
Nichols-Larsen et al. (2005). In our model, we use the
short-term HRQoL measures estimated by Nichols-
Larsen et al. (2005).
Therefore, we define the waiting cost per unit time

for type-i patient, πi , to be the expected loss in quality
of health outcomes as a consequence of one unit time
increase in the ED boarding time

πi � βi pi(QH − (sRi QR + sLi QL)), (3)

where pi corresponds to the average probability of dis-
charge to a rehabilitation center and long-term care
facility of patient type-i for the group of patients who
do not experience any delay in the ED. Using Equation
(3), the waiting cost per day for each patient type is
estimated and presented in Table 3.
Transfer cost. The existing clinical guidelines used
at the MNH recommend to transfer the patients to
another hospital if their waiting time in the ED exceeds
48 hours. This means that the ward manager is will-
ing to keep the patients in the ED for two days and

Table 3. Estimated Patients’ Waiting Cost in the ED Per Day

Index (i) Patient type Daily waiting cost (πi)

1 Mild nonstroke 70
2 Mild stroke 90
3 Severe nonstroke 145
4 Severe stroke 295

if no bed becomes available in that period the patient
is transferred to another hospital, where the patient is
presumably admitted to the ward without any delay.
Kucukyazici (2010) studies the process of patient trans-
fer to other hospitals by means of a comprehensive
simulation model of MNH ED, Neuro-ICU, and neu-
rology wards. Her results clearly demonstrate that the
current practice of waiting for 48 hours of ED boarding
until a transfer decision is made is not the best policy.
Thus, the model proposed in this paper assumes that
the transfer decisions are made at the time of patient
arrival based on the overall congestion of the system.
Consequently, if we decide to transfer the patient, the
maximum transfer cost is considered to be equivalent
to two days of waiting in the current hospital’s ED. In
general, if the threshold for transferring type-i patients
in a hospital is di time units and πi is the ED wait-
ing cost per unit time, then the transfer cost for type-i
patient is estimated as κi � diπi .

5. Properties of the Optimal Policy:
A Numerical Illustration

Before moving on to subsequent sections on approx-
imation methods, we numerically explore the struc-
ture of the optimal admission policy by solving a large
number of problem instances. By reporting the results
from several revealing problem instances, we illustrate
that the form of the optimal policy is not straightfor-
ward. The complexity of the problem stems from the
fact that the optimal policy depends not only on how
many beds are occupied, but also the number of beds
occupied by each patient type, as well as the number
of patients of each type waiting for a bed. It can be
verified that the optimal policy is robust with respect
to the magnitude of waiting and transfer costs and is
affected only by their ratio.

We consider problem instances with two types of
patients: mild stroke (referred to as type 1) and severe
stroke (referred to as type 2). The arrival rates and aver-
age LOS for these two types are reported in Tables 1
and 2. Throughout this section, we assume the number
of beds B and the waiting room capacity K are both 8.
We organize our illustrative examples into two subsec-
tions corresponding to the arrival and the discharge of
a stroke patient, respectively.
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5.1. Arrival of a Stroke Patient
Illustrative Example I. Let the waiting costs be π �

(90, 295) and transfer costs κ � 2π. Suppose there is
no severe stroke patient in the system; i.e., x2 � 0 and
b2 � 0. When there is a new arrival of a mild stroke
patient in the system, the optimal decision is to admit
the new arrival to the ward if there is an available bed
and transfer the patient otherwise. This implies that
the last available bed is not reserved for a severe patient
that may arrive in the future. However, if the waiting
cost of severe stroke patients increases, the form of the
optimal policy changes. Inparticular,whenwe increase
π2 to 450, the optimal policy is to reserve the last avail-
able bed for severe patients if the number ofmild stroke
patientswaiting isnomore thanfive (x1 6 5). This exam-
ple shows that a universal preference ordering between
the two patient types does not exist.
Illustrative Example II. The condition x1 6 5 in Exam-
ple I implies a threshold policy to manage the last
available bed. Denote the threshold on the number of
mild patients waiting for a bed by γ, which equals 5 in
Example I. In this example, we investigate the impact
of the number of different patient types in the ward
on γ. To this end, we consider situations where there
is only one bed available (i.e., b1 + b2 � B − 1) and con-
duct a parametric analysis on the number of beds occu-
pied by mild patients (b1). We take π � (90, 450) and
fix x2 � 0. Figure 1 shows the optimal policy in the
case of an arrival of mild stroke patient. When b1 6 2,
we reserve the last available bed for a severe patient
if x1 6 3 (γ � 3) and allocate that bed to the arriving
mild stroke patient otherwise. This threshold increases
by one (i.e., γ � 4) when 3 6 b1 6 4, and increases by
two (i.e., γ � 5) when 5 6 b1 6 7. It is important to note

Figure 1. (Color online) Optimal Decision If a Mild Stroke
Patient Arrives While x2 � 0 and b1 + b2 � 7

0 1 2 3 4 5 6 7 8
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4
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7

x1

b1

Note. × � Transfer (Reservation); � � Admit mild stroke patient to
bed.

Figure 2. (Color online) Optimal Decision If a Mild Stroke
Patient Arrives While x1 � x2 � 0, b1 + b2 � B − e
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0 1 2 3 4 5 6 7 8

e

Note. × � Transfer (Reservation); � � Admit mild stroke patient to
bed.

that the states where x1 > 0 are transient, since wait-
ing mild patients are either transferred or admitted to
beds. It is also interesting to observe that when there
are less than four mild stroke patients waiting (as an
initial state), the newly arriving mild stroke patients
will be transferred regardless of the value of b1. This
example illustrates that the threshold on x1 to manage
the last available bed depends on the composition of
patients that are already admitted.
Illustrative Example III. Herewe consider a set of recur-
rent states in which x1 � x2 � 0. Let e be the number of
empty beds. For all values of e, the optimal policy in the
event of a mild patient arrival is shown in Figure 2. The
cost parameters are the same as in Example II except
that π2 � 325. The optimal policy is to admit the arriv-
ing mild patient to the bed as long as more than two
beds are available. If no bed is available, the patient is
transferred. However, if only one bed is available, the
admission policy depends on the patient mix in the
ward. In particular, the arriving mild patient is admit-
ted to the ward only if the number of beds occupied
by mild patients (b1) is greater than or equal to three.
Therefore, in this case, the mild patient is admitted
when more beds are already occupied by mild patients
in the ward.
Illustrative Example IV. Nowwe consider the arrival of
a severe stroke patient to the system. Similar to illustra-
tive example II, we examine the optimal policy when
b1 + b2 � B − 1 and x2 � 0. When π � (90, 295), the opti-
mal policy recommends that the newly arrived severe
patient be admitted to the ward. However, when we
decrease the waiting cost of severe patients from 295 to
135, it is optimal to transfer the arriving severe patients
when x1 � K − 1 and b1 6 1 or x1 � K and b1 6 3. This
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Figure 3. (Color online) Optimal Decision If a Mild Stroke
Patient Is Discharged While b1 � b2 � 4
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x1

Note. ◦�No action; ��Admit mild stroke patient to bed; N �Admit
severe stroke patient to bed.

implies that the severe patients do not always get prior-
itized over the mild patients. Intuitively, when the sys-
tem is highly congested and the chance of a discharge
is low in the near future, it is better to use the available
beds to serve the mild patients while transferring the
arriving severe patients.

5.2. Discharge of a Stroke Patient
Illustrative Example V. Consider the event of a patient
discharge when all beds are occupied; i.e., one bed
becomes available. The cost parameters are taken to be
π� (200, 250) and κ� 2π. In Figure 3, we show the opti-
mal decision when a mild stroke patient is discharged
for all combinations of x1 and x2 andwhen b1 � b2 �B/2
before the patient discharge takes place. In this figure,
observe that when 1 6 x1 6 3 and one bed becomes
available, we begin by assigning the emptied bed to a
severe stroke patient. But if the number of severe stroke
patients increases, it would be better to give that bed to
amild stroke patient. This seems to be counterintuitive,
as beds are assigned to mild patients even when there
are severe patients waiting in the queue. The obser-
vation can be rationalized by considering the slower
discharge rate of severe stroke patients. As the system
becomes more congested, it becomes advantageous to
serve the mild stroke patients who have higher dis-
charge rate and hence a higher chance of emptying the
beds in the near future. This phenomenon can happen
when the waiting costs for the two types are close to
each other. If we increase the waiting cost for severe
patients, this phenomenon disappears. This is related
to the observation in Example IV.
Illustrative Example VI. In this example, we are inter-
ested in cases where it is optimal to reserve a newly

Figure 4. (Color online) Optimal Decision If a Mild Stroke
Patient Is Discharged While x2 � 0 and b1 + b2 � 8
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Note. ◦ �No action (Reservation); � � Admit mild stroke patient to
bed.

freed bed for a future arrival of severe stroke patients.
We take the cost parameters to be π � (100, 1,500) and
κ � 2π. We also assume x2 � 0, otherwise bed reserva-
tion for severe stroke patients cannot be optimal. We
conduct a parametric analysis on b1 when all beds are
occupied (i.e., b1 + b2 � B). We vary b1 from one to B
to demonstrate how the reservation pattern changes
depending on the patient mix in the ward in the event
of a discharge of a mild stroke patient. Figure 4 depicts
the optimal decision in this parametric analysis. Evi-
dently, it is optimal to reserve a bed for severe stroke
patients when their waiting cost is much higher than
that of the mild stroke patients. Note that the thresh-
old on x1 above that we stop reserving increases as the
number of occupied beds by mild stroke patients (b1)
increases.
Remarks. The illustrative examples demonstrate the
complex structure of the optimal policy. Even though
these examples suggest some special forms of admis-
sion policy (threshold policy), the precise form of the
optimal policy is quite intricate and varies with the
model parameters.

6. Solution Methodology
The Bellman equation for an average cost DP can be
solved with the relative value iteration algorithm in
a reasonable amount of time when the size of the
problem is relatively small. As the number of patient
types (n), the number of beds in the ward (B), or the
waiting room capacity (K) increase, the curse of dimen-
sionality hinders us from obtaining the optimal solution
of the DP. Thus, we propose an approximation scheme
to find a good admission policy in large-scale instances
of the problem.
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Our proposed approach involves two steps. The first
step is to build a static model in which we assume the
beds are allocated to different patient types and the
allocation does not change over time. By solving this
static model, we find the number of beds that should
be allocated to each type so that the average cost per
period is minimized. We also determine what propor-
tion of patients from each type should be transferred
to another hospital. The average cost of such a model
accounts for waiting costs of patients as well as trans-
fer costs. We call this model static because the policy is
fixed over time irrespective of the state of the system.

The second step is to develop an ADP that can be
solved in a reasonable time frame. To do so, we exploit
some information from the static model’s solution,
including the opportunity cost of occupying a bed, the
number of beds allocated to each type, the average
waiting time, and the average queue length of each
patient type. Then, the bias function h(x,b) is estimated
using this information. To be more precise, we choose
an arbitrary patient type. The value of bias function in
state (x,b) is assumed to be the sum of some contribu-
tions from all patient types in that state. We estimate
the contributions of all types of patients except that
arbitrarily chosen one using the information extracted
from the solution of the static model. For that specific
type we leave the contribution unknown. We plug the
estimated bias functions back into the Bellman equa-
tion to find the unknown contributions. This will lead
to a DP with only one type of patient, which is sim-
pler to solve. We iterate this procedure for all types of
patients to find all the unknown contributions. At the
end, we sum all the contributions up to approximate
h(x,b). Based on the approximate bias function, we can
create an admission policy. Figure 5 shows all these
steps and their interactions.

6.1. The Static Model
In this section, we present a static model that is
based on a queueing approximation of the problem.
This static model allocates a certain number of beds
exclusively for each type of patient. As opposed to the

Figure 5. Schematic View of Solution Methodology

Static bed
allocation model

Approximate bias
function without
contribution of

type i

Calculate
contribution of
type i in bias

function

Informative solution Approximate DP

Iterate over all types

Approximated bias
function

Sum all contributions

ADP policy

dynamic optimal policy obtained from Bellman equa-
tion, this model determines a static policy that does not
change over time and is not influenced by the state of
the system.

Suppose the number of beds dedicated to type-i
patient is b̃i . The system with b̃i beds serving incom-
ing type-i patients can be viewed as a queue with b̃i
servers. Due to the constraint on the total number of
waiting patients, the type of queue we are dealing with
for type-i patients is an M/M/b̃i/b̃i + ki queue. Here ki
is the upper bound on the length of queue for type-i
patients, above which the new arrivals will be turned
away. The service rate is µi but the arrival rate should
not necessarily be equal to λi , because we can transfer
some patients upon their arrival to another hospital.
So the rate of patients entering the system can be less
than the original arrival rate. Therefore, we introduce
a decision variable for the adjusted arrival rate as λ̃i .

The total average cost of this queue is the sum of
the average waiting cost of the patients and the aver-
age cost of transferring the new arrivals. Let us denote
the average number of waiting patients of type i in
the queue by Li . So the average waiting cost is given
by Li times the waiting cost per unit time. Also, on
average, (λi − λ̃i) of type-i patients are transferred to
another hospital per unit time. Note that a portion of
new arrivals will be blocked due to lack of space in
the waiting area, which is λ̃i pki

(pki
is the probability

that there are ki patients waiting in the queue). So in
total, λi − λ̃i(1− pki

) of the arrivals are transferred. The
associated transfer cost would be κi(λi − λ̃i(1− pki

)) per
unit time.

In a general M/M/c/c + k queue, with arrival rate of
λ and service rate of µ, the average length of queue is
given by (Gross et al. 2008):

L �


p0r cρ

c!(1− ρ)2
·[1− ρk+1 − (1− ρ)(k + 1)ρk], ρ , 1,

p0r c

c!
k(k + 1)

2 , ρ � 1,

(4)
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where r � λ/µ and ρ � r/c. The blocking probability is
calculated using

pk �
r c+k

c!ck
p0 , (5)

where

p0 �



[
r c

c!

(
1− ρk+1

1− ρ

)
+

c−1∑
n�0

rn

n!

]−1

, (ρ , 1),[
r c

c! (k + 1)+
c−1∑
n�0

rn

n!

]−1

, (ρ � 1).
(6)

Note that the average waiting time is obtained by
W � L/(λ(1− pk)).

The goal of the static model is to allocate all available
beds (B) and waiting room capacity (K) among differ-
ent types of patients such that the average cost of the
system is minimized. This can be done by using the
following mixed-integer program:

[SM] F∗ � Minimize
n∑

i�1
πiLi +

n∑
i�1
κi(λi − λ̃i(1− pki

))

Subject to
n∑

i�1
b̃i 6 B,

n∑
i�1

ki 6 K,

λ̃i 6 λi , ∀ i ,

λ̃i , b̃i > 0,
b̃i , ki integer, ∀ i.

Proposition 1. The optimal solution of the [SM] gives an
upper bound on the optimal average cost in the [DP]; i.e.,
F∗ > ρ∗.

The proof of Proposition 1 is straightforward since
the optimal solution of the static model [SM] is always
a feasible policy for [DP].

To solve the static model as a continuous nonlinear
program, we relax the integrality constraints on the
number of allocated beds (b̃i) and waiting room capac-
ity (ki). To find the length of queue when the num-
ber of beds is not an integer, the following algorithm
can be used. It also provides the values for blocking
probabilities.
1. If λ̃i � 0, then Li � 0 and pki

� 0.
2. If λ̃i , 0 and b̃i � 0, then Li �∞ and pki

� 1.
3. If λ̃i , 0, b̃i , 0, and b̃i is an integer, then Li and pki

are calculated through Equations (4) and (5).
4. If λ̃i , 0 and b̃i , 0 and b̃i is not an integer, then

b̃i is rounded to the nearest integer (called bnew) and
service rate is adjusted to µnew � b̃iµi/bnew. The Li and
pki

are calculated using bnew and µnew.

For noninteger values of ki , we take the following
interpolation approach:

1. Li(ki)� (ki − bkic)Li(dkie)+ (dkie − ki)Li(bkic);
2. pki

� (ki − bkic)pdkie + (dkie − ki)pbkic ;
where bkic and dkie refer to the biggest integer number
less than or equal to ki and the smallest integer number
greater than or equal to ki , respectively.
Denote the solution of [SM] for type-i patients by
(λ̃∗i , b̃∗i , k∗i ) for all i. Based on this solution, the maxi-
mum number of beds occupied by type-i patients is
b̃∗i . The number of waiting patients of type i is limited
to k∗i . Also, we reject a fraction of new arrivals so that
the actual rate of patients who enter the system is λ̃∗i .
The other piece of information that we extract from the
solution of the static model is the value of the dual vari-
able of the first constraint (the constraint on the number
of allocated beds). The value of this variable (which we
denote by α) gives how much the average cost of the
system can be reduced if we have one more bed avail-
able. Therefore, it can be interpreted as the opportunity
cost of occupying a bed for one unit time (or simply,
value of a bed). We will use this information in deriv-
ing the approximate dynamic program and developing
two static policies to use as benchmarks in computa-
tional experiments.

6.2. Approximate Dynamic Programming
The formulation [DP] can be written as a linear pro-
gram as follows:

[LP] ρ∗ � maxρ
h(x,b)+ρ 6 πTx

+

n∑
i�1
λi min

ai∈Ui (x,b)
{κi ti + h(x+ (1− ai − ti)ei ,b+ aiei)}

+

n∑
i�1

biµi min
di∈Di (x)

{h(x−di ,b−ei +di)}

+

(
1−

n∑
i�1
λi −

n∑
i�1

biµi

)
h(x,b), ∀x,b.

In the above, the decision variables are ρ and h( · ).
We also note that the terms on the right-hand side
of the constraint can be linearized by expanding the
constraint. We prefer the current, nonlinear form for
development later in the paper.

Recall from the solution of [SM] that for type-i
patients, the number of allocated beds is b̃∗i , the
adjusted arrival rate is λ̃∗i , and the maximum length
of queue is k∗i . Furthermore, we can calculate the aver-
age number of type-i patients in the queue (denoted
by Li

∗), and their average waiting time (denoted by
Wi
∗). Another piece of information we use from the

static model is the dual variable associated with the
first constraint in [SM]. As we mentioned earlier, we
denote the value of this dual variable by α and it can
be interpreted as the opportunity cost of occupying
one bed per unit time.
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The bias function h(x,b) in [LP] can be approxi-
mated by

h(x,b)≈ hi(xi , bi)+
∑
j,i

(
π jW j

∗(x j −L j
∗)++

α(b j − b̃∗j)+

µ j

)
,

∀ i , (7)

where (y)+ �max(0, y). For each type j , i, the contribu-
tion to thebias function is estimatedbyπ jW j

∗(x j−L∗j)++
α(b j − b̃∗j)+/µ j and for type i, the contribution is rep-
resented by a general function hi(xi , bi). For type- j
patients, if we control the system according to the solu-
tion of [SM], we expect to see, on average, L∗j patients
waiting in the system. So if the number of waiting
patients is less than or equal to L∗j , there is no extra cost
than the average cost and the contribution is zero. But
if x j > L∗j , then the bias from the average cost can be esti-
mated by the waiting cost of excess patients (x j − L∗j)+.
We know that from [SM], a typical patient of type j is
expected to wait W j

∗ units of time and the waiting cost
per unit time is πi . So the estimated contribution of the
extra patients of type j is π jW j

∗(x j − L∗j)+.
Similarly, the cost of occupying the bed by type- j

patients is estimated. For each bed occupied in addi-
tion to the allocated beds in solution of [SM], b̃∗i , the
opportunity cost per unit time is α(b j − b̃∗j)+. We know
that on average, a typical patient of type j stays in bed
for µ−1

j units of time. Therefore, the total opportunity
cost can be expressed by αµ−1

j (b j − b̃∗j)+.
Plugging (7) into [LP] and simplifying, we obtain a

new linear program:

[LP1] maxρ
hi(xi , bi)+ρ

6πTx+λi min
ai∈Ui (x,b)

{
κi ti + hi(xi +1− ai − ti , bi + ai)

}
+

∑
k,i

λk min
ak∈Uk (x,b)

{
κk tk +πkWk

∗	
{

ak + tk �0, xk > L∗k
}

+
α
µk

	{ak �1, bk > b̃∗k}
}
+ biµi min

di∈Di (x)

{
hi(xi − dii , bi + dii −1)

+
∑
j,i

(
α
µ j

	{di j �1, b j > b̃∗j}−π jW j
∗	{di j �1, x j > L∗j +1}

)}
+

∑
k,i

bkµk min
dk∈Dk (x)

{
hi(xi − dki , bi + dki)− hi(xi , bi)

−πkWk
∗	{dki �1, xk > L∗k +1}− α

µk
	{dkk �0, bk > b̃∗k +1}

+
∑
j,i , k

(
α
µ j

	{dk j �1, b j > b̃∗j}−π jW j
∗	{dk j �1, x j > L∗j +1}

)}
+ (1−λi − biµi)hi(xi , bi), ∀x,b.

The constraint in [LP1] is rather complex. To further
simplify the constraint, we take the following steps.
First, we replace Ui(x,b)with

U′i(xi , bi) � {ai � (ai , ti) ∈ {0, 1}2 | ai 6 	{bi < B},
	{xi � K} 6 ai + ti 6 1}.

Second, by relaxing the constraint d j 6 x j for all j , i,
Di(x) can be replaced with

D′i(xi)�
{
di � (di1 , . . . , din) ∈ {0, 1}n | dii 6 xi ,

n∑
j�1

di j 6 1
}
.

Observe that Ui(x,b) ⊆U′i(xi , bi) and Di(x,b) ⊆D′i(xi).
Similarly, we replace Uk(x,b) and Dk(x) for k , i,
respectively, with

U′k(xi , bi) � {ak � (ak , tk) ∈ {0, 1}2 | ak 6 	{bi < B},
	{xi � K} 6 ak + tk 6 1},

and

D′k(xi)�
{
dk � (dk1 , . . . , dkn) ∈ {0,1}n | dki 6 xi ,

n∑
j�1

dk j 61
}
.

Note that Uk(x,b) ⊆ U′k(xi , bi) and Dk(x,b) ⊆ D′k(xi).
In the next step, we make the right-hand side of the
constraint dependent only on (xi , bi). Let us define
x−i � {x1 , . . . , xi−1 , xi+1 , . . . , xn} and b−i � {b1 , . . . , bi−1 ,
bi+1 , . . . , bn}. Now, to make it independent of x−i and
b−i , we take the minimum over x−i and b−i for each
given (xi , bi). Consequently, by using the new action
space and simplifying, the constraint of [LP1] will be
a function of only xi and bi , and can be written as fol-
lows:

hi(xi , bi)+ρ
6 πi xi +λi min

ai∈U′i (xi , bi )
{κi ti + hi(xi +1− ai − ti , bi + ai)}

+ (1−λi − biµi)hi(xi , bi)

+ min
(x−i ,b−i )∈B(xi , bi )

{∑
k,i

πk xk +
∑
k,i

λk min
ak∈U′k (xi , bi )

{κk tk +πkWk
∗

· 	{ak + tk �0, xk > L∗k}+
α
µk

	{ak �1, bk > b̃∗k}}

+ biµi min
di∈D′i (xi )

{
(1− dii)hi(xi , bi −1)+ dii hi(xi −1, bi)

+
∑
j,i

di j

(
α
µ j

	{b j > b̃∗j}−π jW j
∗	{x j > L∗j +1}

)}
+

∑
k,i

bkµk min
dk∈D′k (xi )

{
(1− dkk)

(
− α
µk

	{bk > b̃∗k +1}
)

+ dik(hi(xi −1, bi +1)− hi(xi , bi))− dkk(πkWk
∗	{xk > L∗k +1})

+
∑
j,i , k

dk j

(
α
µ j

	{b j > b̃∗j}−π jW j
∗	{x j > L∗j +1}

)}}
,

∀xi 6K, bi 6 B,

where B(xi , bi) � {(x−i ,b−i) |
∑

k,i xk 6 K − xi ,
∑

k,i bk 6
B − bi}.

We can take out the minimization over x−i and b−i
from above and write it as a separate mixed-integer
program [MIP]. We need to introduce binary variables
to replace the indicator variables as well as some other
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binary and integer variables to remove the nonlinear
terms from the objective function. By taking all these
steps, we will have an [MIP] with linear constraints
and linear objective function, which is stated in detail
in EC.3 in the online appendix. The resulting [MIP]
can be easily solved by CPLEX even with a large num-
ber of variables and constraints and we denote it by
[MIP](xi , bi , hi(xi , bi)) to emphasize its dependency on
xi , bi and hi(xi , bi). By plugging back the [MIP] into the
[LP1], we have

[LP2] maxρ
hi(xi , bi)+ ρ
6 πi xi + λi min

ai∈Ui (xi , bi )
{κi ti + hi(xi + 1− ai − ti , bi + ai)}

+(1− λi − biµi)hi(xi , bi)+ [MIP](xi , bi , hi(xi , bi)),
∀ xi 6 K, bi 6 B.

Now we need to solve [LP2] with ρ and hi( · ) as
unknown variables. The structure of [LP2] is equiva-
lent to an average cost DP with state variables (xi , bi),
and therefore is solvable by the relative value itera-
tion algorithm. By implementing this decomposition
scheme,we are approximating [DP], which has 2n state
variables by n separate, smaller DP with only two state
variables.

The optimal average cost obtained from the value
iteration algorithm is denoted by ρ∗i . After implement-
ing this algorithm, we also get hi(xi , bi) for all i, xi and
bi . In the process of deriving [LP2], we relaxed some
of the constraints in action space that exist in original
[LP]. So the optimal average cost from [LP2] should be
a lower bound for the optimal average cost. This result
is summarized in the following proposition.

Proposition 2. The optimal objective function of [LP2]
gives a lower bound on the optimal average cost in [DP]; i.e.,
ρ∗i 6 ρ

∗ for each i. Consequently, maxi ρ
∗
i 6 ρ

∗.

6.3. The ADP Policy
After obtaining hi(xi , bi) for each i, we can approximate
the overall h( · ) function according to

h(x,b) ≈
n∑

i�1
hi(xi , bi) ≡ h̃(x,b).

Once we know h̃(x,b), we can use the original [DP]
to determine an action in each state (x,b). We can
explain the rules that constitute the ADP policy as
follows:
The ADP Policy
1. In the case of arrival of a type-i patient, compare the

costs associated with admission of the patient to the queue (if
there is space in the waiting room), admission to the ward
(if there is an empty bed), and transferring to another hos-
pital, which are h̃(x + ei ,b), h̃(x,b + ei), and κi + h̃(x,b),
respectively, and choose the decision with the minimum cost.

2. In the case of discharge of a type-i patient, compare
the costs associated with admission of a type- j patient from
the queue (any type of which there is at least one patient
waiting in the queue) and admitting no patient, which are
h̃(x−e j ,b−ei +e j); ∀ j: x j ,0 and h̃(x,b−ei), respectively,
and choose the decision with the minimum cost.

7. Computational Experiments with
Realistic Problem Instances

We consider problem instances with four patient types.
Note that with four types of patients and a large num-
ber of beds, the optimal policy cannot be computed
exactly due to the curse of dimensionality. In Sec-
tion 7.1, we first describe the Bed Allocation policy and
the Bid Price policy based on the solution of the static
model [SM]. We introduce six instances of the problem
in Section 7.2, while a comparative analysis between
the two static policies, i.e., the Bed Allocation and the
Bid Price policies, the first-come-first-serve (FCFS) pol-
icy (as a benchmark), and the ADP policy over these six
problem instances is reported in Section 7.3. Recogniz-
ing the difficulties associated with the implementation
of the ADP policy in practice, Section 7.4 presents the
Priority Cutoff policy that is inspired by the ADP policy
described in Section 6.3. In Section 7.5, we report on a
second set of comparative analysis between the ADP
policy, the ADP-Based Priority Cutoff policy, and the
current policy being used at the MNH. In Sections 7.6
and 7.7, we examine how the performance of the ADP
policy is affected with respect to nonstationary patient
arrivals and nonlinear waiting cost functions.

7.1. Two Static Admission Policies
Using the solution of [SM], we build two heuristic poli-
cies. The first heuristic policy uses (λ̃∗i , b̃∗i ) for all i. At
any given time, the maximum number of beds occu-
pied by type-i patients is b̃∗i . Also, we transfer some
of the new arrivals of type-i patients based on the
adjusted arrival rate (λ̃∗i ). We call this static policy the
Bed Allocation (BA) policy, which is summarized below.
The Bed Allocation (BA) Policy
1. Admit an arriving type-i patient if the number of occu-

pied beds by type-i patients is less than b̃∗i .
2. When all b̃∗i beds are occupied, and there is room avail-

able in the ED (i.e., ∑n
i�1 xi < K), admit the new arrival to

the queue with probability of pi � λ̃
∗
i/λi and transfer with

probability of 1− pi . If ∑n
i�1 xi � K, we have no option except

transferring the new arrival.
An alternative policy is motivated by the revenue

management literature, whichwe call the Bid Price (BP)
policy. This involves using the dual variable of the first
constraint in [SM] (denoted by α). Recall that α repre-
sents the opportunity cost of occupying a bed per unit
time. The average LOS for a patient of type i is µ−1

i and
hence, the average opportunity cost of admitting one
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type-i patient to a bed is αµ−1
i . If the cost of transfer to

another hospital is less than αµ−1
i , the heuristic policy

involves transferring all arrivals of type-i patients. This
makes sense when there is no patient in the system
(x � 0) or when there is at least one available bed (note
that these two are equivalent because there is no reser-
vation in this type of policy). In the event that there are
some patients present in the queue, however, a more
precise policy would be to incorporate the patient’s
waiting cost. We approximate the average waiting cost
using average waiting time obtained from [SM]. From
the solution of [SM], we know that, on average, type-i
patients wait for Wi

∗
� Li

∗/(λ̃∗i(1 − pk∗i
)) units of time.

Hence, the waiting cost can be estimated as πiWi
∗.

Using this average waiting cost, in the case that x >
0, we let a patient from type i to enter the system if
αµ−1

i + πiWi
∗ 6 κi and transfer the new arrival, other-

wise.
To complete the BP policy, we also need to define

a decision rule for admitting waiting patients in the
queue when a bed becomes available. There are two
possible options: using the FCFS rule or prioritizing
patients with higher waiting cost per period. To find
the best policy, we tested different combinations of
FCFS and prioritization with and without incorpora-
tion of waiting costs. The priority rule incorporating
waiting costs performed better than others in most of
the numerical examples. Thus, our BP policy is sum-
marized below.

The Bid Price (BP) Policy
1. If there is at least one bed available (∑n

i�1 bi < B), admit
an arriving type-i patient to the ward if αµ−1

i 6 κi and
transfer otherwise.
2. If there is no bed available (∑n

i�1 bi � B), admit a new
arriving patient of type i to the queue if αµ−1

i + πiWi
∗ 6 κi

and transfer otherwise.
3. If one bed becomes available, priority is given to the

patients with highest waiting cost (as a tie-breaking rule, the
patient with smaller index is admitted).

7.2. Six Problem Instances
In light of the data summarized in Section 4, we first
consider a base case, in which π � (70, 90, 145, 295), κ �
2π, and B � 16. We develop two more cases by altering
the service capacity by 25% in both directions, while
the cost parameters remain the same. By doing so, we
vary the level of congestion in the system to see its
impact on the performance of the policy alternatives.
The base case corresponds to case 2, whereas the prob-
lem instances with B � 12 and B � 20 correspond to case
1 and case 3, respectively. In cases 4–6, we increase the
waiting costs for severe patients (π � (70, 90, 500, 600))
as well as the transfer costs (κ � 3π) in order to observe
how the admission policies respond to higher levels
of patient sensitivity to the ED boarding. For all six

problem instances, we assume that the ED can accom-
modate a maximum of six boarding patients, i.e., K � 6.

We are unable to find the optimal policy for any of
the six cases in our comparative studies. Nevertheless,
it is possible to compare the ADP policy to the other
heuristic policies. To this end, we developed a simula-
tion model to help us find the average cost associated
with a specific policy. The length of simulation hori-
zon is considered to be 10,000 days with 1,000 days of
a warm-up period and we replicate the simulation for
100 times. Using the simulation results, we also report
the average waiting time of all patients and the average
transfer rates for each policy alternative. The simple
averages do not reflect the true performance of each
policy since transferring or ED boarding a mild patient
is not as undesirable as transferring one severe patient.
Therefore, we use the unit time waiting costs (πi) as
weights to compute the weighted averages.

7.3. Comparative Analysis I
We now turn to a performance comparison among the
First-come-first-serve (FCFS, Bed Allocation (BA), Bid
Price (BP), and the ADP policies. The average total
costs of the four admission policies for the six cases are
depicted inFigure6. In thefigure, eachplot corresponds
to a case, and is located according to its congestion level
(across the horizontal axis) and patient sensitivity to
waiting (across the vertical axis). Evidently, the ADP
policyproduces the lowest average total cost in all cases.
The other policy options fail to maintain low average
total costs under all six patient sensitivity and conges-
tion scenarios, e.g., the BP policy under case 3.

The average waiting times and the average rates of
patient transfer associated with the admission policy
options are depicted in Figure 7. The trade-off among
these two performance measures is quite evident from
this figure. Themore a policy recommends transferring
the patients to another hospital, the less the average
waiting time experienced by the remaining patients.
Note that the ADP policy seems to result in a more
acceptable overall performance by balancing these two
metrics. Even though the ADP policy does not produce
the lowest average waiting time in all cases, its transfer
rate is consistently reasonable.

To better display the comparison of the FCFS, BA, BP,
and ADP policies, the plots in each of these two figures
(and the two following figures) are not of the same ver-
tical scale. Consequently, these figures do not highlight
the true impact of increased congestion and patient
sensitivity levels on the three performance measures.

We make the following observations:
1. When the transfer cost increases (i.e., moving up

in Figure 7), all policies—except BP—decrease the rate
of transfers, which results in longer waiting times.

2. When the system is more congested (i.e., moving
right in Figure 7), the transfer rates increase in all poli-
cies in order to avoid much longer ED boarding times.
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Figure 6. Average Quality of Life (QoL) Lost Per Day—ADP Policy vs. Static Admission Policies
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3. The BP policy in cases 1–3 is reduced to a sim-
ple priority queue with no transfers. This happens
due to the small value of α and average waiting times
obtained from the [SM]. In all these cases, the BP pol-
icy also dominates the FCFS policy.
4. The BA policy does not seem to be very promis-

ing. The total average cost of this policy is almost the
highest in all cases, except in case 3 where its transfer
rate is not acceptable.

The overall managerial insight from Figures 6 and 7
is that, as the congestion and patient sensitivity levels
increase, the ADP policy increasingly outperforms the

Figure 7. Average Waiting Time and Rate of Transfers—ADP Policy vs. Static Admission Policies

1.0 6 15

12

9

6

3

0 0

12

6

18

24

30

0

20

10

30

40

50

0

10

0 0

5

15

10

25

20

4

6

2

8

10

0

7

14

21

35

28

20

30

40

50

10

8

6

4

2

0

3

0

%

% % %

%%0.5

H
ou

r

0
FCFS BA ADPBP

FCFS BA ADPBP

FCFS BA ADPBP

FCFS BA ADPBP

FCFS BA ADPBP

FCFS BA ADPBP

2 8

4

6

2

0

1

H
ou

r

H
ou

r

H
ou

r
H

ou
r

H
ou

r

0

Pa
tie

nt
 s

en
si

tiv
ity

High

Base

Case 1

Case 4 Case 5

Case 2 (base scenario)

Case 6

Case 3

Congestion

Base (beds = 16)Low (+25% beds) High (–25% beds)

Average waiting time (hour) Average rate of transfers (%)

other policies in terms of achieving both lower costs
and acceptable trade-offs between waiting times and
patient transfers.

7.4. A More Practical Policy
The ADP policy can be challenging to implement as
it provides an action for every state of the system.
Through a detailed analysis of the results of the ADP
policy, however, we observe that often only a few states
of the system are critical in nature. For instance, when
there is only one bed available in the ward and a new
patient arrives, the type of action we must take in
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response to the new arrival is crucial. Should we admit
this new patient to the bed or save the last bed for
the arrival of a more severe patient in the future? As
a more general question, how many beds should we
reserve for severe patients by not admitting the mild
patients? Or, is a reservation necessary at all? In con-
trast, making the best decision when half of the ser-
vice capacity is available seems to be trivial. Thus, we
develop a dynamic heuristic policy by following the
ADP policy in the so-called critical states and applying
a simple policy such as the FCFS rule in other states,
which would be much easier to implement.
To facilitate exploring the structure of the ADP pol-

icy, we first organize the patients into two groups
regardless of their disease: mild and severe patients.
The patients in the mild group have lower waiting cost
and shorter average LOS, while in the severe group
patients are highly sensitive towaiting and they occupy
the bed for longer time periods. When we study the
rules that constitute the ADP policy in six cases, it is
evident that the severe patients should be prioritized
over mild patients. The ADP policy always admits a
severe patient if there is an available bed. However,
this is not true for the mild patients. The ADP policy
tends to reserve some beds for the severe patients (by
not admitting the mild patients to those beds) unless
there is a high chance of a patient discharge in the near
future.

The chance of a future discharge depends on the
patient mix in the ward, particularly the number of
beds occupied by severe patients. Denote the aggre-
gate number of severe patients staying in the ward
by bs. Based on the value of bs at any time, we classify
the chance of a discharge into three levels. The chance
of a discharge is deemed high if bs 6 θ1B, medium if
θ1B < bs 6 θ2B, and low otherwise; 0 6 θ1 < θ2 6 1. We
also introduce a threshold on the cost associated with
a transfer that affects the transfer decision. The trans-
fer cost in this heuristic policy is defined to be small if
κ 6 ωπ and to be large, otherwise. The values for these
thresholds can be derived based on the ADP policy
recommendations at the critical states of the system.

Note that some simplifications are required to obtain
the thresholds from the ADP policy. For example, in
developing this heuristic policy we do not incorporate
the number of patients in the queue in our admission
decisions. This is justified by the results we obtained
from the ADP policy in all six cases and it is mostly
due to the low arrival rates of patients to the system
in our examples. It is presumed that the queues are
empty when a new patient arrives and consequently
the decision is based only on the state of the ward.
Therefore, the rules in this heuristic policy complywith
the results of our illustrative example in Figure 2 of
Section 5.

We call this heuristic policy the ADP-based Priority
Cutoff (PC) policy because (i) it gives priority to certain
types of patients, and (ii) it changes behavior when the
state of the system surpasses the cutoff points. Prior-
ity cutoff policies are commonly used in the context
of patient scheduling and healthcare capacity alloca-
tion (see, for example; Esogbue and Singh 1976, Green
et al. 2006, Ayvaz and Huh 2010, Mandelbaum et al.
2012). However, finding the best value of cutoff points
(or thresholds) for this type of policy can be challeng-
ing. For our problem, the ADP policy could be used
to find the structure of the PC policy as well as the
appropriate threshold values. A general form of such
an ADP-based PC policy is stated below. Note that in
the following, S denotes the number of beds reserved
for severe patients.

The ADP-based Priority Cutoff (PC) Policy.
1. When a severe patient arrives:
(a) If at least one bed is available, admit the patient to

the ward.
(b) If all beds are occupied:

i. If the transfer cost is small, then transfer the
patient.

ii. Otherwise, admit the patient to the queue if the
chance of a discharge is high and transfer the patient other-
wise.

2. When a mild patient arrives:
(a) If more than S beds are available, admit the patient

to the ward (i.e., FCFS policy).
(b) If between one and S beds are available:

i. Admit the patient to the ward if the chance of a
discharge is high.

ii. Admit the patient to the queue if the chance of a
discharge is medium.

iii. Transfer the patient if the chance of a discharge is
low.

(c) If all beds are occupied, admit the patient to the
queue if the chance of a discharge is high and transfer the
patient otherwise.

3. If a discharge occurs, the priority of admitting a patient
to the ward is always given to the severe patients. If no severe
patient is waiting in the queue, admission of a mild patient
follows item 2(a).

7.5. Comparative Analysis II
The second part of our analysis in this section involves
comparing the ADP-Based Priority Cutoff (PC) policy
and the current policy being used in the MNH with
the ADP policy. The MNH policy has been briefly dis-
cussed in Section 1. It allocates a fixed number of beds
to each patient type regardless of their level of severity
and leaves some beds flexible to be used by all patient
types. To be more specific, six beds out of 16 available
beds are dedicated to stroke patients, the same number
of beds are allocated to nonstroke patients, and the rest
of the beds are being used by both types of patients.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
9.

12
8.

18
3.

18
0]

 o
n 

15
 M

ar
ch

 2
01

7,
 a

t 1
1:

10
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Samiedaluie et al.: Managing Patient Admissions in a Neurology Ward
Operations Research, Articles in Advance, pp. 1–22, ©2017 INFORMS 17

Let us denote the number of beds dedicated to stroke
patient beds by bstroke, the number of beds dedicated
to nonstroke patient beds by bnon-stroke, and the number
of flexible beds by bflexible. The patients are admitted
to the beds until all the dedicated beds to their type
and flexible beds are full. Then, they wait in the queue
for a bed in the ward until the waiting time exceeds
a threshold (denoted by d) in which case they have to
be transferred. The hospital uses the same time thresh-
old for all patient transfers. We summarize this policy,
which is a static bed allocation policy, below.
The Current (MNH) Policy.
1. When a patient arrives, admit the patient to the bed if

any of the dedicated beds to that patient type is empty. If all
the dedicated beds are full, the next option will be the flexible
beds. If all the dedicated and flexible beds are occupied, then
the patient waits in the queue.
2. If the wait time for a patient in the queue exceeds

the transfer threshold, the patient is transferred to another
hospital.
For the base case (case 2) we know that (bstroke,

bnon-stroke, bflexible) � (6, 6, 4). For other cases, we adjust
the bed allocations by simply keeping the same ratios
as in case 2 between the beds assigned to different
patient types. To find the transfer threshold (d), we fol-
low the same idea we used in Section 4.3 to estimate κ.
As we have set κ � 3π for cases 4–6, this implies the
transfer threshold for the patients in these cases is three
days (72 hours). Therefore, the current (MNH) policy
uses the following parameters in our experiments:

• In cases 1 and 4, we have (bstroke , bnonstroke , bflexible)�
(8, 8, 4).

• In cases 2 and 5, we have (bstroke , bnonstroke , bflexible)�
(6, 6, 4).

Figure 8. Average Quality of Life (QoL) Lost Per Day—ADP Policy vs. Practical Admission Policies
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• In cases 3 and 6, we have (bstroke , bnonstroke , bflexible)�
(5, 5, 2).

• In cases 1–3, we have d � 48 hr, and in cases 4–6,
we have d � 72 hr.
Here, we also remind the reader that the thresh-

olds of the ADP-based PC policy explained in Sec-
tion 7.4 vary with the cost parameters. By examining
the results of the ADP policy for the six cases, we
observed the following:

• In all cases, the threshold associated with the
transfer cost is ω � 2.

• In cases 1–3, we have S � 1, θ1 � 1/4, and θ2 � 1/2.
• In cases 4–6, we have S � 4, θ1 � 1/2, and θ2 � 3/4.
Since the waiting costs of the severe patients are

much higher in cases 4–6, the number of beds reserved
for them is larger. Also, the larger transfer costs in cases
4–6 lead to higher thresholds for evaluating the likeli-
hood of having an available bed in the future.

The average total costs of the ADP, PC, and MNH
policies are depicted in Figure 8. The ADP policy has
the lowest average cost in all cases, whereas the costs
associated with the PC policy are consistently within
an acceptable range of the ADP policy. The difference
between the ADP policy (or PC policy) and the MNH
policy is more pronounced when the patients are more
sensitive to waiting and service capacity is limited (i.e.,
cases 2–3 and 5–6).

The averagewaiting time and average rates of patient
transfer for the three policies are shown in Figure 9. The
PC policy is more conservative than the ADP policy in
terms of patient transfers. In all cases, it transfers fewer
patients and consequently it has higher average wait-
ing times. Compared to the current policy, the ADP
policy decreases thewaiting time significantly while its
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Figure 9. Average Waiting Time and Rate of Transfers—ADP Policy vs. Practical Admission Policies
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transfer rates are slightly higher in some cases. The PC
policy, however, reduces the wait times in most cases
by transferring the same or less number of patients.
Hence, it could be utilized as an efficient and practi-
cal policy by the hospital to improve the performance
of the ward in terms patients’ health outcomes. It is
also important to note that the PC policy generates the
second lowest average costs over six cases compared
to the static policy alternatives (i.e., BA, BP, and FCFS
policies) in Section 7.3.

7.6. Nonstationary Arrivals
Our modeling framework and solution approach
assume stationary arrival process. The stationarity
assumption is customary in the healthcare operations
literature (Patrick et al. 2008) and is verified using
the data obtained from MNH in Section 4. Neverthe-
less, we show that our work can be adapted to prob-
lem settings with nonstationary arrival processes by
building on pointwise stationary approximation (PSA)
in the queueing control literature (Green and Kolesar
1991 and Yoon and Lewis 2004). We conduct numeri-
cal experimentswith nonstationary arrival processes to
check the robustness of our proposed ADP approach.
The PSA approach combines solutions from prob-

lemswith stationary arrivals to construct heuristic con-
trol policies for problems with nonstationary arrival
processes. For each problem with stationary arrivals,
the ADP approach proposed before can be applied to
obtain a solution. Our numerical instances consider
problems with periodically time-varying arrival rates;
that is, the patient arrival rates follow a cyclic pattern
that repeats itself after a given period of time. This type

of time-varying arrival rates are considered in both
Green and Kolesar (1991) and Yoon and Lewis (2004).

Assume that there are τ points at which the arrival
rates of patients change (i.e., there are τ + 1 different
arrival rates within the cycle). Then each cycle involves
τ+ 1 subperiod with stationary arrival rates. To obtain
a solution via PSA, a separate problem is solved for
each subperiodwherewe assume the prevailing arrival
rate in the subperiod remains constant over the infinite
time horizon. The resulting problems have stationary
parameters, which are then solved using the solution
approach we introduced earlier in the paper. Each sta-
tionary problem solved in this fashion suggests an
admission policy. To construct a heuristic policy for the
original problem with nonstationary arrival rates, we
piece together policies from the stationary problems,
where the stationary policy from each problem is only
implemented for the relevant intervals with constant
arrival rates. Note that the heuristic approach intro-
duced here can be applied for the ADP, PC, as well as
the BA and BP policies.

To examine the performance of PSA policies, we con-
sider problem instances where the arrival rates follow
a weekly cyclic pattern. Patients arrive at the hospi-
tal at higher rates during the first three days of a
week, i.e., between Mondays and Wednesdays. As we
move toward the end of a week, the arrival rates tend
to decrease. Specifically, on Thursdays and Fridays,
patient arrival rates are reduced by 50%. The arrival
rates are again halved duringweekends (Saturdays and
Sundays). Note that there are two points during a week
at which the arrival rates change, i.e., τ � 2. Therefore,
to solve the problem using the PSA approach, we need
to solve three (τ + 1) problems with stationary arrival
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Table 4. Robustness of the ADP Policy with Respect to
Nonstationary Arrivals

Policy
ADP

Case FCFS BA BP PC ADP improvement (%)

1 2.84 36.36 2.42 1.81 1.59 13
2 29.37 60.24 24.22 12.06 9.99 17
3 170.70 89.50 83.61 64.83 63.26 2
4 5.44 341.20 4.60 5.09 3.92 15
5 56.59 116.69 54.93 57.12 55.74 −1
6 333.61 151.96 140.85 146.33 140.99 −0.1

rates. We have chosen the time-varying arrival rates
such that the arrival rates on Thursdays and Fridays
are equivalent to the values for cases 1–6 in Section 7.2.
The LOS distributions and other problem parameters
are also the same as cases 1–6 in Section 7.2.
We use PSA to construct all policies except FCFS.

Table 4 reports average QoL lost per day for the five
policies. The last column of Table 4 shows the percent-
age improvement of the ADP policy, compared with
the best alternative policies. For cases 1–3, the best
alternative policy is PC, while the best alternative pol-
icy for cases 4–6 is BP.

To compare the ADP policy to other alternatives, we
find the nonstationary BA and BP policies by solving
the SM model with arrival rates of each period. The
PC policy again is developed based on the ADP pol-
icy. Both BP and PC are significantly better than FCFS
policy in all cases. Overall, the ADP policy has the best
performance, although it is slightly inferior to BP in
cases 5–6, both with very high system congestion level.
Therefore, the performance of the ADP policy seems to
deteriorate as the system is heavily congested. For all
other cases, the ADP policy shows significant improve-
ment over alternative policies. Overall, our numerical
results suggest that the proposed ADP policy contin-
ues to be a reasonable solution approach for prob-
lem instances with nonstationary problem parameters,
which is consistent with the observations in the PSA
literature we cited earlier.

7.7. Nonlinear Cost Functions
In this section, we consider nonlinear waiting cost
functions as it seems more realistic to assume the
patient’s health status deteriorates at higher rateswhen
the waiting time increases. To this end, we speculate
convex piecewise-linear increasing functions for the
waiting costs of patients. For each patient type, we
divide the time between zero and the transfer thresh-
old into three-hour intervals. During each interval the
waiting cost is a linear function of time with a slope
that is increasing from one interval to another. The
slope increases until the transfer threshold, after which
it remains constant and equal to the slope of the last
interval.

Table 5. Robustness of the ADP Policy with Respect to
Nonlinearity of Waiting Cost

Cost increase (%) ADP improvement (%)

Case FCFS BA BP PC ADP Linear Non-linear

1 63 73 63 41 29 27 42
2 98 53 94 56 33 57 70
3 134 77 126 78 35 61 71
4 64 102 76 96 91 12 −3
5 99 102 92 114 73 24 31
6 137 131 98 151 87 22 26

To find the patient admission policy using the pro-
posed ADP approach, we need to linearize the cost
functions. We run regression models with zero inter-
cept to fit linear lines to the nonlinear cost functions.
Using the slopes of the fitted linear functions for each
patient type, we solve the ADP and obtain the associ-
ated policy. To compare the performance of the admis-
sion policies under linear and nonlinear waiting cost
structures, we choose the parameters of the nonlinear
cost function such that the slope of the fitted line is
equal to the waiting cost per unit time (πi) considered
in the problem instances of Section 7.2. We then use
simulation to calculate the average total cost in both
scenarios.

The results of this comparison are shown in Table 5.
In this table, the percent increase in the total cost asso-
ciated with each policy when the waiting costs are
incurred according to a nonlinear function is reported.
The last two columns of this table show the percent
improvement achieved by the ADP policy in each
scenario over the best of the other policy options.
A negative percentage implies that the ADP policy is
dominated by another heuristic policy. From the table,
it can be concluded that the performance of the ADP
policy remains robust to the change in the structure
of waiting costs in almost all cases. Except in case 4,
in which there is enough service capacity, the percent
improvement of the ADP policy over other policies has
in fact increased.

8. Concluding Remarks
We have considered an admission control and bed
allocation problem, incorporating the differentiating
features of neurology wards. From a modeling per-
spective, we presented an average cost DP that assumes
none of the beds in the ward are earmarked to certain
patient types. To overcome the curse of dimensionality
of DP formulation that prevents us from solving the
realistic-size problem instances in reasonable amount
of time, we proposed an ADP that uses some informa-
tion from a static queuing model. To the best of our
knowledge, the ADP for the average cost problem has
not been fully explored theoretically. A couple of exam-
ples are Roubos and Bhulai (2010 and 2012) who use
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ADP in controlling queues with application to call cen-
ters. The numerical results from our experiments on
some problem instances, based on the Montreal Neu-
rological Hospital, revealed that the admission policy
suggested by our proposed ADP works very well com-
pared to the other heuristic policies we have studied.
Recognizing the managerial challenges in imple-

menting the fully state dependent ADP policy, we also
developed an ADP-Based Priority Cutoff policy that
performs quite well.Wemust emphasize that the struc-
ture of this heuristic policy is highly dependent on
the results of our experiments for the six problem
instanceswe have considered in the comparative analy-
sis. The goal of developing such a policywas to demon-
strate how an easy-to-use set of admission rules can be
derived from the ADP policy for hospital managers.

The current admission policy at the hospital involves
dedicating six beds to stroke patients and six beds
to nonstroke patients, while leaving four beds flexible
for both patient types. Furthermore, a patient transfer
request is triggered after 48 hours of ED boarding. In
contrast, the proposed ADP policy does not use ear-
marked beds and decides to transfer the patient at the
time of arrival, considering the state of the system. By
comparing these two policies, we observe that the cur-
rent policy can be 70%–110% worse than the ADP pol-
icy in terms of average HRQoL lost per day. Also, the
ADP policy can decrease the average boarding time in
the ED (especially when there are a limited number of
beds available such as in case 3 and case 6 of our com-
parative analysis) significantly without affecting the
average rate of patient transfers. Thus, we provide the
following insights for neurology ward managers: (i) it
is better to decide whether or not to transfer a patient
to another hospital immediately upon arrival and by
taking into account the state of the system, (ii) dedicat-
ing neurology ward beds to patient types can worsen
average ED boarding times, (iii) if the managers prefer
to use an earmarking strategy, it is recommended to do
so based on the level of severity of the patient’s condi-
tion rather than their disease (i.e., along the lines of the
PC policy).

The modeling framework proposed in this paper is
based on two simplifications. First, a small percent-
age of the patients with neurological conditions can
be admitted directly to the ward for elective surgeries,
while this paper is confined to the patients who are
admitted through the ED. Second, some patients, e.g.,
severe stroke patients, require intensive care for stabi-
lization prior to being admitted to the ward, which we
do not represent in our model. Their LOS in the Neuro-
ICU, however, is most often 48 hours with fairly low
variability. Extensions to the model proposed in this
paper to relax these two assumptions constitute fruitful
avenues for future research.

The primary structural assumption underlying the
model presented in this paper is the medical infea-
sibility of caring for neurology patients at off-service
beds, i.e., beds located in other wards of the hospital.
Although the use of off-service beds has been com-
mon practice in the health sector, it constitutes a short-
term fix for, arguably, prevailing systemic issues in the
institution. This is analogous to the use of inventories
to offset the underlying capacity imbalance between
sequential manufacturing processes. The impact of an
off-service hospital admission on the health outcome
varies among patient types. According to Lim et al.
(2015), for example, the admission of oncology patients
in hallway or in off-service beds did not appear to
compromise the timeliness or frequency of medical
assessments. However, delays in nursing care were
observed and patient satisfaction was decreased. For
acute heart failure (AHF) patients, however, the neg-
ative impact of an off-service admission can be seri-
ous. Cowie et al. (2013) pointed out that mortality
can be reduced if AHF patients are rapidly and accu-
rately assessed in the ED, and admitted to a cardiol-
ogy ward with the required expertise. According to the
National Heart Failure Audit conducted in 2011–2012,
only about half of AHF patients were treated in cardiac
wards. The cardiac ward had a 7.8% mortality rate for
AHF, whereas mortality was significantly higher at the
general medicine and other wards (13.2% and 17.4%,
respectively). Evidence also suggests that the mortal-
ity advantage for cardiology ward treatment persists
postdischarge.

We witness a current trend among hospital man-
agers to minimize the use of off-service beds as part
of their efforts to improve the patient flow through the
hospital. A recent effort at the Rouge ValleyHealth Sys-
tem (RVHS) for the development and implementation
of a new bed map (Williams and Topaloglou 2013) is
a good example. RVHS is a two-site hospital with 479
beds serving the East Greater Toronto Area. One of the
mainmotivations for the process redesignwas the “sig-
nificant problems with off-servicing.” RVHS was able
to reduce the medical off-service beds from 20 to one
by the new bed map. Another example is Vibra Hospi-
tal of the Central Dakotas. This is a specialty acute care
hospital that provides long-term acute care to com-
plex patients withmultiple comorbidities, requiring an
extended stay in a hospital setting. Multidisciplinary
teams comprising up to eight individuals provide spe-
cialty care, and hence it is not medically acceptable
to admit a patient to an off-service area in Vibra. The
model proposed in this paper would be applicable to
the extent that off-servicing in the hospital is signifi-
cantly reduced as an administrative policy.

On the methodological side, we contribute to the
literature on ADP for admission control of queues.
Allocation of a limited capacity of resources among
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several customer types is a critical decision faced
in many settings, including healthcare (Gupta 2013),
telecommunications (Paschalidis and Tsitsiklis 2000),
andmanufacturing (Buzacott and Shanthikumar 1993).
While it is common to formulate queueing control
problems in the dynamic programming framework,
solving the resulting problems exactly is usually not
feasible due to the large state and/or control spaces.
The approach proposed in our paper takes two steps.
First, a queueing control problem is formulated under
a static control policy. Second, the solution from the
first step is used to build value function approxima-
tions in the linear programming-based ADP frame-
work (see, e.g., de Farias and Van Roy 2003). Our
approach is applicable when (i) queueing control
under a static policy is tractable, and (ii) the approxi-
mate linear program resulting from the value function
approximation can be solved. While our paper gives
one such example, there are potentially many other
problems where the approach is applicable.
Specific to the healthcare operations context, dy-

namic programming models of queueing admission
control have been very popular (see, e.g., Ayvaz and
Huh 2010, Helm et al. 2011, Green et al. 2006). In the
aforementioned papers, heuristic control policies are
usually based on the analysis of special cases with
certain parameter restrictions on the queues (e.g., all
customer types share the same service rate). In con-
trast, we build dynamic heuristic control policies based
on the analysis of static control policies; no parame-
ter restrictions are imposed on the queues. While it
is certainly outside the scope of the current research,
it is an interesting future research topic to compare
and contrast the two approaches. One advantage of
the approach proposed in our work is its sound the-
oretical foundation in the general framework of linear
programming-based ADP.

Within the domain of linear programming-based
ADP, value function approximations are generally lin-
ear and/or separable. A somewhat unique aspect of
our work is that the value function approximation is
nonlinear and nonseparable. We show that the approx-
imate linear program resulting from such a value func-
tion approximation is still tractable. We certainly hope
that more researchers will adopt such approximation
architecture in their work in the future.
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