partvi nia

عنوان سخنراني: Binary quantization of deep neural networks using regularization

زمان برگزاري: شنبه 21 ارديبهشت ماه 1398

فایل صوتی سخنرانی: icon-9

 فایل ارائه: icon-9

Title: Binary quantization of deep neural networks using regularization

Abstract: The deployment of deep neural networks on edge devices such as cell phones has been diffr cult because they are resource hungry. Binary neural networks help to alleviate the prohibitive resource requirements of deep nets, where activation function and weight are constrained to only one bit. We modify the back-propagation, by introducing a regularization function that encourages training weights around binary values. Our simple modifr cation beats the state of the art binary deep networks in complex image classification tasks.

 

Speaker: Dr. Vahid Partovi Nia

Principal Machine Learning Scientist at Noah's Ark Research Lab of Huawei Technologies, Adjunct Professor at Ecole Polytechnique de Montreal

 

Featuring-A

تقویم آموزشی دانشکده

Featuring-C

گروه‌های آموزشی / رشته‌ها

Featuring-B

مراکز تحقیقاتی و آزمایشگاه‌ها

Featuring-D

گروه داده پرداز دانشگاه فردوسی مشهد

بیش از5000 دانشجو
بیش از 180 عضو هیات علمی
بیش از 22000 فارغ‌التحصیل
بیش از300 دانشجوی بین‌المللی
60 رشته/مقطع تحصیلی
7 گروه آموزشی